The Herbert Lab
at UPENN Upenn shield

menu

QUICK ACCESS expand_more

Strongyloides Transgenesis

In collaboration with James "Sparky" Lok, who is arguably the father of transgenesis in parasitic nematodes29, we have engaged in a very challenging project that explores the localization, expansion and phenotype/function of helminth antigen-specific responses. This issue of T cell recognition of helminth antigen is critical to understand if there is ever to be a successful vaccine against these pathogens. Many laboratories across the globe have attempted to make transgenic worms for studying immunology, but few, if any, have been successful. Together with Sparky, we recently demonstrated stable transgenesis in the GI nematode Strongyloides ratti where expression of the immunodominant CD4+ T cell epitope 2W1S fused to green fluorescent protein (GFP) was achieved to facilitate tracking of CD4+ T cell responses in vivo30. In this system, the parasite expresses a single 2W1S epitope under an actin promoter, which is most active in nematode muscle cells along the body wall. C57BL/6 mice infected with this stable transgenic line (termed Hulk) undergo a dose-dependent expansion of activated CD44hiCD11ahi 2W1S-specific CD4+ T cells. Our results indicate that pathogen context, as opposed to TCR specificity, exerted a dominant influence over CD4+ T cell phenotype. As new tissue-specific promoters are employed in this model system, it will become possible to engineer stable transgenic lines that express fluorescent reporters or immunogenic molecules in different nematode anatomical compartments to test how antigen accessibility impacts helminth antigen recognition by T cells. Altogether, this new model system allows us to test questions that were previously not possible.

References


  1. Herbert, D. R. et al. Alternative macrophage activation is essential for survival during schistosomiasis and downmodulates T helper 1 responses and immunopathology. Immunity 20, 623-635, doi:10.1016/s1074-7613(04)00107-4 (2004).

  2. Rani, R., Jordan, M. B., Divanovic, S. & Herbert, D. R. IFN-gamma-driven IDO production from macrophages protects IL-4Ralpha-deficient mice against lethality during Schistosoma mansoni infection. Am J Pathol 180, 2001-2008, doi:10.1016/j.ajpath.2012.01.013 (2012).

  3. Fontana, M. F. et al. Myeloid expression of the AP-1 transcription factor JUNB modulates outcomes of type 1 and type 2 parasitic infections. Parasite Immunol 37, 470-478, doi:10.1111/pim.12215 (2015).

  4. Fontana, M. F. et al. JUNB is a key transcriptional modulator of macrophage activation. J Immunol 194, 177-186, doi:10.4049/jimmunol.1401595 (2015).

  5. Herbert, D. R. et al. Arginase I suppresses IL-12/IL-23p40-driven intestinal inflammation during acute schistosomiasis. J Immunol 184, 6438-6446, doi:10.4049/jimmunol.0902009 (2010).

  6. Herbert, D. R., Orekov, T., Perkins, C. & Finkelman, F. D. IL-10 and TGF-beta redundantly protect against severe liver injury and mortality during acute schistosomiasis. J Immunol 181, 7214-7220, doi:10.4049/jimmunol.181.10.7214 (2008).

  7. Rani, R., Smulian, A. G., Greaves, D. R., Hogan, S. P. & Herbert, D. R. TGF-beta limits IL-33 production and promotes the resolution of colitis through regulation of macrophage function. Eur J Immunol 41, 2000-2009, doi:10.1002/eji.201041135 (2011).

  8. Taupin, D. & Podolsky, D. K. Trefoil factors: initiators of mucosal healing. Nat Rev Mol Cell Biol 4, 721-732, doi:10.1038/nrm1203 (2003).

  9. Kinoshita, K., Taupin, D. R., Itoh, H. & Podolsky, D. K. Distinct pathways of cell migration and antiapoptotic response to epithelial injury: structure-function analysis of human intestinal trefoil factor. Mol Cell Biol 20, 4680-4690, doi:10.1128/MCB.20.13.4680-4690.2000 (2000).

  10. Taupin, D. R., Kinoshita, K. & Podolsky, D. K. Intestinal trefoil factor confers colonic epithelial resistance to apoptosis. Proc Natl Acad Sci U S A 97, 799-804, doi:10.1073/pnas.97.2.799 (2000).

  11. Wills-Karp, M. et al. Trefoil factor 2 rapidly induces interleukin 33 to promote type 2 immunity during allergic asthma and hookworm infection. J Exp Med 209, 607-622, doi:10.1084/jem.20110079 (2012).

  12. Savenije, O. E. et al. Association of IL33-IL-1 receptor-like 1 (IL1RL1) pathway polymorphisms with wheezing phenotypes and asthma in childhood. J Allergy Clin Immunol 134, 170-177, doi:10.1016/j.jaci.2013.12.1080 (2014).

  13. Bonnelykke, K. et al. A genome-wide association study identifies CDHR3 as a susceptibility locus for early childhood asthma with severe exacerbations. Nat Genet 46, 51-55, doi:10.1038/ng.2830 (2014).

  14. Ho, J. E. et al. Common genetic variation at the IL1RL1 locus regulates IL-33/ST2 signaling. J Clin Invest 123, 4208-4218, doi:10.1172/JCI67119 (2013).

  15. McBerry, C. et al. Trefoil factor 2 negatively regulates type 1 immunity against Toxoplasma gondii. J Immunol 189, 3078-3084, doi:10.4049/jimmunol.1103374 (2012).

  16. Hung, L. Y. et al. Trefoil Factor 2 Promotes Type 2 Immunity and Lung Repair through Intrinsic Roles in Hematopoietic and Nonhematopoietic Cells. Am J Pathol 188, 1161-1170, doi:10.1016/j.ajpath.2018.01.020 (2018).

  17. Belle, N. M. et al. TFF3 interacts with LINGO2 to regulate EGFR activation for protection against colitis and gastrointestinal helminths. Nat Commun 10, 4408, doi:10.1038/s41467-019-12315-1 (2019).

  18. Zullo, K. M. et al. LINGO3 regulates mucosal tissue regeneration and promotes TFF2 dependent recovery from colitis. Scand J Gastroenterol 56, 791-805, doi:10.1080/00365521.2021.1917650 (2021).

  19. Patel, N. N. et al. Sentinels at the wall: epithelial-derived cytokines serve as triggers of upper airway type 2 inflammation. Int Forum Allergy Rhinol 9, 93-99, doi:10.1002/alr.22206 (2019).

  20. Patel, N. N. et al. Fungal extracts stimulate solitary chemosensory cell expansion in noninvasive fungal rhinosinusitis. Int Forum Allergy Rhinol 9, 730-737, doi:10.1002/alr.22334 (2019).

  21. Rane, C. K. et al. Development of solitary chemosensory cells in the distal lung after severe influenza injury. Am J Physiol Lung Cell Mol Physiol 316, L1141-L1149, doi:10.1152/ajplung.00032.2019 (2019).

  22. Hung, L. Y., Pastore, C. F., Douglas, B. & Herbert, D. R. Myeloid-Derived IL-33 Limits the Severity of Dextran Sulfate Sodium-Induced Colitis. Am J Pathol 191, 266-273, doi:10.1016/j.ajpath.2020.11.004 (2021).

  23. Vainchtein, I. D. et al. Astrocyte-derived interleukin-33 promotes microglial synapse engulfment and neural circuit development. Science 359, 1269-1273, doi:10.1126/science.aal3589 (2018).

  24. Odegaard, J. I. et al. Perinatal Licensing of Thermogenesis by IL-33 and ST2. Cell 166, 841-854, doi:10.1016/j.cell.2016.06.040 (2016).

  25. Mahapatro, M. et al. Programming of Intestinal Epithelial Differentiation by IL-33 Derived from Pericryptal Fibroblasts in Response to Systemic Infection. Cell Rep 15, 1743-1756, doi:10.1016/j.celrep.2016.04.049 (2016).

  26. Cayrol, C. & Girard, J. P. Interleukin-33 (IL-33): A nuclear cytokine from the IL-1 family. Immunol Rev 281, 154-168, doi:10.1111/imr.12619 (2018).

  27. Hsu, C. L., Neilsen, C. V. & Bryce, P. J. IL-33 is produced by mast cells and regulates IgE-dependent inflammation. PLoS One 5, e11944, doi:10.1371/journal.pone.0011944 (2010).

  28. Hung, L. Y. et al. Cellular context of IL-33 expression dictates impact on anti-helminth immunity. Sci Immunol 5, doi:10.1126/sciimmunol.abc6259 (2020).

  29. Lok, J. B. CRISPR/Cas9 Mutagenesis and Expression of Dominant Mutant Transgenes as Functional Genomic Approaches in Parasitic Nematodes. Front Genet 10, 656, doi:10.3389/fgene.2019.00656 (2019).

  30. Douglas, B. et al. Transgenic expression of a T cell epitope in Strongyloides ratti reveals that helminth-specific CD4+ T cells constitute both Th2 and Treg populations. PLoS Pathog 17, e1009709, doi:10.1371/journal.ppat.1009709 (2021).

expand_less