The Herbert Lab
at UPENN Upenn shield

menu

QUICK ACCESS expand_more

Sensory Neurons & Host Defense

Keeping with my long-standing interest in understanding the earliest mechanisms responsible for Type 2 immunity and host responses to parasitic helminths, we have recently turned our attention to the nervous system. Nociceptors are a heterogeneous population of skin sensory neurons (responsible for pain and itch) that upon activation release neurotransmitters and neuropeptides, which are molecules that possess immunomodulatory function(s). This raises the intriguing possibility that nociceptors may participate in host protection against skin-penetrating larval stages of various helminth species. Most of the published work describing experimental infection with skin-penetrating helminths uses a hypodermic needle to administer the infectious inoculum, which bypasses the epidermal and dermal skin layers. Because the afferent endings of nociceptors are in the epidermis and dermis, the role of nociceptors in host protective immunity remains unexplored. To address this gap, we have developed a percutaneous infection procedure in mice that allows us to study a variety of helminth species with a skin penetrating larval stage (i.e., Strongyloides ratti, S. mansoni and N. brasiliensis). We can quantify numbers of infectious larvae that enter or fail to penetrate skin, thereby providing a readout by which to interrogate the level of host protection.

Our preliminary data in the S. ratti model shows that during primary infection of WT mice, up to 80% of S. ratti infectious stage larvae (iL3) penetrate the skin, whereas only 20-30% penetrate during secondary infection. Moreover, mice genetically deficient in the major cation channel in nociceptors called transient receptor potential vanilloid 1 (TRPV1) show significant defects in resistance to worm entry during both primary and secondary challenge infection. It is entirely possible that skin nociceptors directly sense helminth-derived products, and/or that helminth products interfere with nociceptor function as an evasion strategy. To address these possibilities, we have also established primary neuronal culture systems to study neuron activation as measured by calcium influx (in collaboration with Bruce Freedman, PhD). Preliminary studies reveal that pre-exposure of dorsal root ganglia (structures containing nociceptor cell bodies) to excretory secretory (ES) products from two helminth species (S. ratti and S. mansoni) suppresses calcium influx in TRPV1+ neurons, suggesting that worm secretions impair neuron activation. We are currently in the process of establishing whether and if so, which worm ES products modulate distinct subpopulations of nociceptors responsible for pain and/or itch. This work is being done in close collaboration with Ishmail Abdus-Saboor, Ph.D.

References


  1. Herbert, D. R. et al. Alternative macrophage activation is essential for survival during schistosomiasis and downmodulates T helper 1 responses and immunopathology. Immunity 20, 623-635, doi:10.1016/s1074-7613(04)00107-4 (2004).

  2. Rani, R., Jordan, M. B., Divanovic, S. & Herbert, D. R. IFN-gamma-driven IDO production from macrophages protects IL-4Ralpha-deficient mice against lethality during Schistosoma mansoni infection. Am J Pathol 180, 2001-2008, doi:10.1016/j.ajpath.2012.01.013 (2012).

  3. Fontana, M. F. et al. Myeloid expression of the AP-1 transcription factor JUNB modulates outcomes of type 1 and type 2 parasitic infections. Parasite Immunol 37, 470-478, doi:10.1111/pim.12215 (2015).

  4. Fontana, M. F. et al. JUNB is a key transcriptional modulator of macrophage activation. J Immunol 194, 177-186, doi:10.4049/jimmunol.1401595 (2015).

  5. Herbert, D. R. et al. Arginase I suppresses IL-12/IL-23p40-driven intestinal inflammation during acute schistosomiasis. J Immunol 184, 6438-6446, doi:10.4049/jimmunol.0902009 (2010).

  6. Herbert, D. R., Orekov, T., Perkins, C. & Finkelman, F. D. IL-10 and TGF-beta redundantly protect against severe liver injury and mortality during acute schistosomiasis. J Immunol 181, 7214-7220, doi:10.4049/jimmunol.181.10.7214 (2008).

  7. Rani, R., Smulian, A. G., Greaves, D. R., Hogan, S. P. & Herbert, D. R. TGF-beta limits IL-33 production and promotes the resolution of colitis through regulation of macrophage function. Eur J Immunol 41, 2000-2009, doi:10.1002/eji.201041135 (2011).

  8. Taupin, D. & Podolsky, D. K. Trefoil factors: initiators of mucosal healing. Nat Rev Mol Cell Biol 4, 721-732, doi:10.1038/nrm1203 (2003).

  9. Kinoshita, K., Taupin, D. R., Itoh, H. & Podolsky, D. K. Distinct pathways of cell migration and antiapoptotic response to epithelial injury: structure-function analysis of human intestinal trefoil factor. Mol Cell Biol 20, 4680-4690, doi:10.1128/MCB.20.13.4680-4690.2000 (2000).

  10. Taupin, D. R., Kinoshita, K. & Podolsky, D. K. Intestinal trefoil factor confers colonic epithelial resistance to apoptosis. Proc Natl Acad Sci U S A 97, 799-804, doi:10.1073/pnas.97.2.799 (2000).

  11. Wills-Karp, M. et al. Trefoil factor 2 rapidly induces interleukin 33 to promote type 2 immunity during allergic asthma and hookworm infection. J Exp Med 209, 607-622, doi:10.1084/jem.20110079 (2012).

  12. Savenije, O. E. et al. Association of IL33-IL-1 receptor-like 1 (IL1RL1) pathway polymorphisms with wheezing phenotypes and asthma in childhood. J Allergy Clin Immunol 134, 170-177, doi:10.1016/j.jaci.2013.12.1080 (2014).

  13. Bonnelykke, K. et al. A genome-wide association study identifies CDHR3 as a susceptibility locus for early childhood asthma with severe exacerbations. Nat Genet 46, 51-55, doi:10.1038/ng.2830 (2014).

  14. Ho, J. E. et al. Common genetic variation at the IL1RL1 locus regulates IL-33/ST2 signaling. J Clin Invest 123, 4208-4218, doi:10.1172/JCI67119 (2013).

  15. McBerry, C. et al. Trefoil factor 2 negatively regulates type 1 immunity against Toxoplasma gondii. J Immunol 189, 3078-3084, doi:10.4049/jimmunol.1103374 (2012).

  16. Hung, L. Y. et al. Trefoil Factor 2 Promotes Type 2 Immunity and Lung Repair through Intrinsic Roles in Hematopoietic and Nonhematopoietic Cells. Am J Pathol 188, 1161-1170, doi:10.1016/j.ajpath.2018.01.020 (2018).

  17. Belle, N. M. et al. TFF3 interacts with LINGO2 to regulate EGFR activation for protection against colitis and gastrointestinal helminths. Nat Commun 10, 4408, doi:10.1038/s41467-019-12315-1 (2019).

  18. Zullo, K. M. et al. LINGO3 regulates mucosal tissue regeneration and promotes TFF2 dependent recovery from colitis. Scand J Gastroenterol 56, 791-805, doi:10.1080/00365521.2021.1917650 (2021).

  19. Patel, N. N. et al. Sentinels at the wall: epithelial-derived cytokines serve as triggers of upper airway type 2 inflammation. Int Forum Allergy Rhinol 9, 93-99, doi:10.1002/alr.22206 (2019).

  20. Patel, N. N. et al. Fungal extracts stimulate solitary chemosensory cell expansion in noninvasive fungal rhinosinusitis. Int Forum Allergy Rhinol 9, 730-737, doi:10.1002/alr.22334 (2019).

  21. Rane, C. K. et al. Development of solitary chemosensory cells in the distal lung after severe influenza injury. Am J Physiol Lung Cell Mol Physiol 316, L1141-L1149, doi:10.1152/ajplung.00032.2019 (2019).

  22. Hung, L. Y., Pastore, C. F., Douglas, B. & Herbert, D. R. Myeloid-Derived IL-33 Limits the Severity of Dextran Sulfate Sodium-Induced Colitis. Am J Pathol 191, 266-273, doi:10.1016/j.ajpath.2020.11.004 (2021).

  23. Vainchtein, I. D. et al. Astrocyte-derived interleukin-33 promotes microglial synapse engulfment and neural circuit development. Science 359, 1269-1273, doi:10.1126/science.aal3589 (2018).

  24. Odegaard, J. I. et al. Perinatal Licensing of Thermogenesis by IL-33 and ST2. Cell 166, 841-854, doi:10.1016/j.cell.2016.06.040 (2016).

  25. Mahapatro, M. et al. Programming of Intestinal Epithelial Differentiation by IL-33 Derived from Pericryptal Fibroblasts in Response to Systemic Infection. Cell Rep 15, 1743-1756, doi:10.1016/j.celrep.2016.04.049 (2016).

  26. Cayrol, C. & Girard, J. P. Interleukin-33 (IL-33): A nuclear cytokine from the IL-1 family. Immunol Rev 281, 154-168, doi:10.1111/imr.12619 (2018).

  27. Hsu, C. L., Neilsen, C. V. & Bryce, P. J. IL-33 is produced by mast cells and regulates IgE-dependent inflammation. PLoS One 5, e11944, doi:10.1371/journal.pone.0011944 (2010).

  28. Hung, L. Y. et al. Cellular context of IL-33 expression dictates impact on anti-helminth immunity. Sci Immunol 5, doi:10.1126/sciimmunol.abc6259 (2020).

  29. Lok, J. B. CRISPR/Cas9 Mutagenesis and Expression of Dominant Mutant Transgenes as Functional Genomic Approaches in Parasitic Nematodes. Front Genet 10, 656, doi:10.3389/fgene.2019.00656 (2019).

  30. Douglas, B. et al. Transgenic expression of a T cell epitope in Strongyloides ratti reveals that helminth-specific CD4+ T cells constitute both Th2 and Treg populations. PLoS Pathog 17, e1009709, doi:10.1371/journal.ppat.1009709 (2021).

expand_less