Overview: Type 2 Immunity
The over-arching goal of my research program is to use parasitic organisms as a guide to investigate basic mechanisms of host immunity, inflammation and wound healing. I have been continuously NIH-R01 funded by the National Institutes of Health (NIH) since 2007 and have authored 55 manuscripts published in journals that include: Science, Science Immunology, Nature Medicine, Nature Communications, Immunity, JEM, PNAS, PLoS Pathogens, and the Journal of Immunology. Most of this work has focused on the immune response to parasitic helminths, organisms that are the likely evolutionary driving force for Type 2 immunity. Helminths are a major cause of disease in impoverished populations (~2-3 billion people), and biomedical research focused on parasitic helminths has been a fertile ground for scientific discovery. Helminths such as hookworms pose a formidable challenge to the host immune system regarding their large size, morphological complexity and the host tissue niches they occupy. While infectious larval stages can cause tremendous damage to host tissues as they invade and migrate, the hematophagous nature of adult stages can cause persistent injury during feeding. Surprisingly, most helminth species can survive for years, even decades in their hosts due to a variety of mechanisms including those that suppress and evade host immunity. Given this complex biology, research projects based in my lab (and most collaborative work) focus on the mechanisms that initiate Type 2 responses, those that drive tissue repair, and requirements for host protective immunity at the sites where worms invade and reside (e.g., skin, respiratory tract, and intestine). Given the widely held notion that allergic inflammation is due to maladaptive Type 2 responses that initially evolved to deal with helminths, our work has broad relevance to both infectious and non-infectious disease. An overview of the research topics covered by my laboratory, including key collaborative projects are depicted in the figure to the right.
References
Herbert, D. R. et al. Alternative macrophage activation is essential for survival during schistosomiasis and downmodulates T helper 1 responses and immunopathology. Immunity 20, 623-635, doi:10.1016/s1074-7613(04)00107-4 (2004).
Rani, R., Jordan, M. B., Divanovic, S. & Herbert, D. R. IFN-gamma-driven IDO production from macrophages protects IL-4Ralpha-deficient mice against lethality during Schistosoma mansoni infection. Am J Pathol 180, 2001-2008, doi:10.1016/j.ajpath.2012.01.013 (2012).
Fontana, M. F. et al. Myeloid expression of the AP-1 transcription factor JUNB modulates outcomes of type 1 and type 2 parasitic infections. Parasite Immunol 37, 470-478, doi:10.1111/pim.12215 (2015).
Fontana, M. F. et al. JUNB is a key transcriptional modulator of macrophage activation. J Immunol 194, 177-186, doi:10.4049/jimmunol.1401595 (2015).
Herbert, D. R. et al. Arginase I suppresses IL-12/IL-23p40-driven intestinal inflammation during acute schistosomiasis. J Immunol 184, 6438-6446, doi:10.4049/jimmunol.0902009 (2010).
Herbert, D. R., Orekov, T., Perkins, C. & Finkelman, F. D. IL-10 and TGF-beta redundantly protect against severe liver injury and mortality during acute schistosomiasis. J Immunol 181, 7214-7220, doi:10.4049/jimmunol.181.10.7214 (2008).
Rani, R., Smulian, A. G., Greaves, D. R., Hogan, S. P. & Herbert, D. R. TGF-beta limits IL-33 production and promotes the resolution of colitis through regulation of macrophage function. Eur J Immunol 41, 2000-2009, doi:10.1002/eji.201041135 (2011).
Taupin, D. & Podolsky, D. K. Trefoil factors: initiators of mucosal healing. Nat Rev Mol Cell Biol 4, 721-732, doi:10.1038/nrm1203 (2003).
Kinoshita, K., Taupin, D. R., Itoh, H. & Podolsky, D. K. Distinct pathways of cell migration and antiapoptotic response to epithelial injury: structure-function analysis of human intestinal trefoil factor. Mol Cell Biol 20, 4680-4690, doi:10.1128/MCB.20.13.4680-4690.2000 (2000).
Taupin, D. R., Kinoshita, K. & Podolsky, D. K. Intestinal trefoil factor confers colonic epithelial resistance to apoptosis. Proc Natl Acad Sci U S A 97, 799-804, doi:10.1073/pnas.97.2.799 (2000).
Wills-Karp, M. et al. Trefoil factor 2 rapidly induces interleukin 33 to promote type 2 immunity during allergic asthma and hookworm infection. J Exp Med 209, 607-622, doi:10.1084/jem.20110079 (2012).
Savenije, O. E. et al. Association of IL33-IL-1 receptor-like 1 (IL1RL1) pathway polymorphisms with wheezing phenotypes and asthma in childhood. J Allergy Clin Immunol 134, 170-177, doi:10.1016/j.jaci.2013.12.1080 (2014).
Bonnelykke, K. et al. A genome-wide association study identifies CDHR3 as a susceptibility locus for early childhood asthma with severe exacerbations. Nat Genet 46, 51-55, doi:10.1038/ng.2830 (2014).
Ho, J. E. et al. Common genetic variation at the IL1RL1 locus regulates IL-33/ST2 signaling. J Clin Invest 123, 4208-4218, doi:10.1172/JCI67119 (2013).
McBerry, C. et al. Trefoil factor 2 negatively regulates type 1 immunity against Toxoplasma gondii. J Immunol 189, 3078-3084, doi:10.4049/jimmunol.1103374 (2012).
Hung, L. Y. et al. Trefoil Factor 2 Promotes Type 2 Immunity and Lung Repair through Intrinsic Roles in Hematopoietic and Nonhematopoietic Cells. Am J Pathol 188, 1161-1170, doi:10.1016/j.ajpath.2018.01.020 (2018).
Belle, N. M. et al. TFF3 interacts with LINGO2 to regulate EGFR activation for protection against colitis and gastrointestinal helminths. Nat Commun 10, 4408, doi:10.1038/s41467-019-12315-1 (2019).
Zullo, K. M. et al. LINGO3 regulates mucosal tissue regeneration and promotes TFF2 dependent recovery from colitis. Scand J Gastroenterol 56, 791-805, doi:10.1080/00365521.2021.1917650 (2021).
Patel, N. N. et al. Sentinels at the wall: epithelial-derived cytokines serve as triggers of upper airway type 2 inflammation. Int Forum Allergy Rhinol 9, 93-99, doi:10.1002/alr.22206 (2019).
Patel, N. N. et al. Fungal extracts stimulate solitary chemosensory cell expansion in noninvasive fungal rhinosinusitis. Int Forum Allergy Rhinol 9, 730-737, doi:10.1002/alr.22334 (2019).
Rane, C. K. et al. Development of solitary chemosensory cells in the distal lung after severe influenza injury. Am J Physiol Lung Cell Mol Physiol 316, L1141-L1149, doi:10.1152/ajplung.00032.2019 (2019).
Hung, L. Y., Pastore, C. F., Douglas, B. & Herbert, D. R. Myeloid-Derived IL-33 Limits the Severity of Dextran Sulfate Sodium-Induced Colitis. Am J Pathol 191, 266-273, doi:10.1016/j.ajpath.2020.11.004 (2021).
Vainchtein, I. D. et al. Astrocyte-derived interleukin-33 promotes microglial synapse engulfment and neural circuit development. Science 359, 1269-1273, doi:10.1126/science.aal3589 (2018).
Odegaard, J. I. et al. Perinatal Licensing of Thermogenesis by IL-33 and ST2. Cell 166, 841-854, doi:10.1016/j.cell.2016.06.040 (2016).
Mahapatro, M. et al. Programming of Intestinal Epithelial Differentiation by IL-33 Derived from Pericryptal Fibroblasts in Response to Systemic Infection. Cell Rep 15, 1743-1756, doi:10.1016/j.celrep.2016.04.049 (2016).
Cayrol, C. & Girard, J. P. Interleukin-33 (IL-33): A nuclear cytokine from the IL-1 family. Immunol Rev 281, 154-168, doi:10.1111/imr.12619 (2018).
Hsu, C. L., Neilsen, C. V. & Bryce, P. J. IL-33 is produced by mast cells and regulates IgE-dependent inflammation. PLoS One 5, e11944, doi:10.1371/journal.pone.0011944 (2010).
Hung, L. Y. et al. Cellular context of IL-33 expression dictates impact on anti-helminth immunity. Sci Immunol 5, doi:10.1126/sciimmunol.abc6259 (2020).
Lok, J. B. CRISPR/Cas9 Mutagenesis and Expression of Dominant Mutant Transgenes as Functional Genomic Approaches in Parasitic Nematodes. Front Genet 10, 656, doi:10.3389/fgene.2019.00656 (2019).
Douglas, B. et al. Transgenic expression of a T cell epitope in Strongyloides ratti reveals that helminth-specific CD4+ T cells constitute both Th2 and Treg populations. PLoS Pathog 17, e1009709, doi:10.1371/journal.ppat.1009709 (2021).